

IDEAL INDUSTRIES INC. TECHNICAL MANUAL MODEL: 61-795

The Service Information provides the following:

- Precautions and safety information
- Specifications
- Performance test procedure
- Calibration and calibration adjustment procedure
- Basic maintenance (replacing the battery and fuses)

Form number: TM61795 Revision: 3. Date: June 2008

TABLE OF CONTENTS

Title	Page	
Introduction	1	
Precautions and Safety Information	1	
Safety Information	1	
Required Equipment	2	
Performance Verification	3	
Table 1 Performance Verification Model 61-795	3	
Calibration	4/5	
Table 2 Calibration Range Inputs Model 61-795	5	
Replacing the Battery	5	
Replacing Fuses	5	
Circuit Board Drawing	6	
Battery and Fuse Replacement Drawing	7	

Introduction

M Warning

To avoid shock or injury, do not perform the verification tests or calibration procedures described in this manual unless you are qualified to do so.

The information provided in this document is for the use of qualified personnel only.

△ Caution

The 61-795 contains parts that can be damaged by static discharge. Follow the standard practices for handling static sensitive devices.

For additional information about IDEAL INDUSTRIES and its products, and services, visit IDEAL INDUSTRIES web site at:

www.idealindustries.com

SAFETY

Review the following safety precautions to avoid injury and prevent damage to this product or any products connected to it. To avoid potential hazards, use the product only as specified.

It is recommended that you read through the Operation or User manual before starting. Not all Caution, Warning, or Danger precautions are listed in this manual.

\triangle CAUTION.

These statements identify conditions or practices that could result in damage to the equipment or other property.

M WARNING.

These statements identify conditions or practices that could result in personal injury or loss of life.

Specific precautions

Use proper Fuse. To avoid fire hazard, use only the fuse type and rating specified for this product.

Do not operate without covers. To avoid personal injury, do not apply any voltage or current to the product without the covers in place.

Electric overload. Never apply a voltage to a connector on the product that is outside the range specified for that connector.

Avoid electric shock. To avoid injury or loss of life, do not connect or disconnect probes or test leads while they are connected to a voltage source.

Avoid electric shock. To avoid injury or loss of life, do not come in contact with tested material or probes while the Test Button is pressed. High Voltage potentials are present during Insulation Tests..

Do not operate in wet/damp conditions. To avoid electric shock, do not operate this product in wet or damp conditions.

Page 2

Required Equipment

Required equipment is listed in Table B. If the recommended models are not available, equipment with equivalent specifications may be used. Only qualified personnel should perform repairs or servicing.

-		Recommended Model	
Equipment	Required Characteristics		
Calibrator	AC Voltage Range: 0-750V ac	Fluke 5500A	
	Accuracy: ±0.04% (Basic)	Calibrator or	
	Frequency Range: $10 \sim 500 \text{KHz}$	equivalent	
	Accuracy: ± 2%		
	DC Voltage Range: 0-1000V dc		
	Accuracy: ±0.006% (Basic)		
	Current Range: 0 ~ 10A		
	Accuracy:		
	AC (45Hz to 65Hz): ±0.05% (Basic)		
	DC: ± 0.008% (Basic)		
	Frequency Source:		
	0.01 Hz ~ 2.0000 MHz		
	Accuracy: ±0.0025%		
	Amplitude:		
	$0.5V \text{ p-p} \sim 1.0V \text{ p-p (square wave)}$		
	Accuracy: ± 5%(45Hz-1KHz)		
	Ω range: $0.01 \Omega \sim 330 M$		
	Accuracy: ±0.007% (Basic)		
	Capacitance Range: 1pF ~ 1.1mF		
	Accuracy: ±0.19% (Basic)		
	Temperature Range: -200°C ~ 1800°C		
	Accuracy: ±0.1°C (Basic)		

Required fixed resistors: 0Ω , 5Ω , 19Ω , 190Ω , $0.0M\Omega$, $1M\Omega$, $10M\Omega$, $100M\Omega$, $1000M\Omega$ **Simulated Test leads:** With a total resistance of $< .1\Omega \pm 10 \text{m}\Omega$ or $.05\Omega$ per simulated lead.

PERFORMANCE VERIFICATIONS

Perform the following analysis, if the meter conforms to the limits listed in Table 1 the meter is functioning correctly. If the meter does not conform to any of the listed limits, the calibration procedure must be performed.

Check the fuse as a BBS, 1A/600V, 10.4*35 (0.41x1.38 inch) UL/CSA, interrupting rating 10kA. Check case, leads, display, etc, for any defects.

Table 1 Performance Verification: Model 61-795

	meation. Mode			
Function Setting	Apply	Reading	Specification	
/Range DCV	550V DC	547.2 to 552.8	[+0.59/ +1 digita]	
ACV	550V AC	545.2 to 554.8	[±0.5% ±1 digits] [±0.8% ±4 digits]	
Continuity Ω/	330 V AC <30Ω	Buzzer sounds	Not specified	
Resistance:	<u> </u>	Duzzei soulius	Not specified	
LOΩ	Simulated leads	.08 to .12	$[\pm 0.02\Omega + 0.05 \text{ per lead}]$	
LOΩ	0Ω	-0.03 to +0.03	$[\pm 0.0252 + 0.03 \text{ per read}]$	
LOΩ	5Ω	4.87 to 5.13	$[\pm 0.032]$ $[\pm 2.0\% \pm 3 \text{ digits}]$	
LOΩ	$\frac{3\Omega}{19\Omega}$	18.59 to 19.41	$[\pm 2.0\% \pm 3 \text{ digits}]$	
$\Omega/$	190Ω	185.9 to 194.1	$[\pm 2.0\% \pm 3 \text{ digits}]$	
LOΩ	190Ω	20.2mA to 25.8mA	Source check	
LOΩ	10	20.2mA to 25.8mA	Source check	
Insulation Resistance		ZUZIIIA IU ZJOIIIA	Source check	
$M\Omega$, 250V	10MΩ	250 to 275Vdc	Source Check	
			Source Check	
MΩ, 500V	10ΜΩ	500 to 550Vdc		
MΩ 1000V	10ΜΩ	1000 to 1100Vdc	Source Check	
	0Ω	0.001 to 0.010	±10 digits	
MΩ, 250V	100kΩ	0.090 to 0.110	±10 digits	
,	1ΜΩ	0.975 to 1.025	[±2.0% ±5 digits]	
	10ΜΩ	9.75 to 10.25	[±2.0% ±5 digits]	
	100ΜΩ	94.5 to 105.5	[±5.0% ±5 digits]	
	100kΩ	0.085 to 0.115	±15 digits	
	1MΩ	0.975 to 1.025	[±2.0% ±5 digits]	
$M\Omega$, 500V	10ΜΩ	9.75 to 10.25	$[\pm 2.0\% \pm 5 \text{ digits}]$	
	100ΜΩ	97.5 to 102.5	[±2.0% ±5 digits]	
	$1000 \mathrm{M}\Omega$	945 to 1055	$[\pm 5.0\% \pm 5 \text{ digits}]$	
	100kΩ	0.085 to 0.015	±15 digits	
MΩ, 1000V	1ΜΩ	0.975 to 1.025	[±2.0% ±5 digits]	
	10ΜΩ	9.75 to 10.25	[±2.0% ±5 digits]	
	100ΜΩ	97.5 to 102.5	$[\pm 2.0\% \pm 5 \text{ digits}]$	
	1000ΜΩ	965 to 1035	$[\pm 3.0\% \pm 5 \text{ digits}]$	
MΩ, 500V	500ΚΩ	<500V	Source Check	
Check on each Voltage range	0ΜΩ	<3.0mA	Source Check	

Page 4

CALIBRATION

Calibration Preparation

Required Equipment

The class of calibrator or equipment should have an accuracy that exceeds, by an expectable ratio, the

accuracy of the instrument under test.

Required fixed resistors: 0Ω , 5Ω , 19Ω , $19\Omega\Omega$, $0.0M\Omega$, $1M\Omega$, $10M\Omega$, $100M\Omega$, $1000M\Omega$ Simulated Test leads. With a total resistance of $< .1\Omega \pm 10m\Omega$ or $.05\Omega$ per simulated lead.

Calibration Procedure

It is recommended that all IDEAL meters undergo the following calibration procedure on an annual basis.

\sim				
Ca	Iıh	ro	tı	ΛĦ
$\sim a$	II V	ча	u	U.L

- 1. Press the key to switch off the instrument.
- 2. Remove test leads from the input terminals.
- 3. Remove hood and battery compartment cover by using a screwdriver. (Refer to Figure 2)
- 4. Loosen the screws from the case bottom. Remove the case bottom.
- 5. Short JP1, then replace the case bottom and battery compartment cover. (*Refer to Figure 1*)
- 6. Press the key to turn on the instrument. The LCD displays the version of the software.
- 7. Push the "TEST" key to enter the calibration mode.
- 8. Press the key to select the range to calibrate.
- 9. Input the range standard value as listed in Table 2. Push the "TEST" key for more than 2 seconds. The LCD will display the A/D reading value.
- 10. Push the "TEST" key to save the range. Calibration is complete for that range.
- 11. If you want to calibrate the other ranges, repeat steps 8 10.
- 12. When complete, exit the calibration mode. Press the key to switch off the instrument.
- 13. Remove the case bottom and remove the short on JP1. (Refer to Figure 1)
- 14. Replace the case bottom and battery compartment cover, pressing to close it, and secure with screw.
- 15. Install the hood.

Table 2 Calibration Range Inputs: Model 61-795

Damas	English of	Innert the colibration atom doud colors
Range	Function	Input the calibrator standard value
1	DCV	DC600.0V
2	ACV	AC600.0V
3	Ω • \imath)	190.0 Ω
4	Ω •1))	0.00Ω
5	LOΩ	19.00Ω
6	LOΩ	0.00Ω
7	LOΩ	5.00 Ω
8	LOΩ	0.00Ω
9	250V/MΩ	1000M Ω
10	250V/MΩ	100.0MΩ
11	250V/MΩ	10.00MΩ
12	250V/MΩ	1.000MΩ
13	250V/MΩ	$0.000 \mathrm{M}\Omega$
14	500V/MΩ	1000M Ω
15	500V/MΩ	100.0MΩ
16	500V/MΩ	10.00 M Ω
16	500V/MΩ	1.000 M Ω
18	500V/MΩ	$0.000 \mathrm{M}\Omega$
19	$1000 \text{V/M}\Omega$	1000M Ω
20	$1000 \text{V/M}\Omega$	100.0M Ω
21	$1000\text{V/M}\Omega$	10.00 M Ω
22	$1000\text{V/M}\Omega$	1.000M Ω
23	1000V/MΩ	$0.000 \mathrm{M}\Omega$

Battery Replacement (Refer to Figure 2)

- 1. Disconnect the test leads from any circuit under test.
- 2. Press the key to switch off the instrument.
- 3. Remove the hood and battery compartment cover by using a screwdriver.
- 4. Remove the batteries replacing them with new ones all of the same type (1.5×6 NEDA 15F IEC R6 JIS UM-3) (Alkaline batteries are recommended.) making sure of polarity while installing.
- 5. Install bottom case cover and secure with screws.
- 6. Install the hood.

Replacing Fuse (Refer to Figure 2)

- 1. Disconnect the test leads from any circuit under test.
- 2. Press the key to switch off the instrument.
- 3. Remove the hood and battery compartment cover by using a screwdriver.
- 4. Loosen the screws from the case bottom. Remove the case bottom.
- 5. Remove input cover using a screwdriver.
- 6. Check the fuse with a digital multimeter with a source current < 10mA in low resistance range. (Replace fuse with a BBS 1A/600V, 10.3*38 (1.5x0.41 inch) UL/CSA, interrupting rating 10kA.)
- 7. Install input cover and secure with screw.
- 8. Replace the case bottom and secure with screw.
- 9. Replace the battery compartment cover, pressing to close it, and secure with screw.
- 10. Install the hood.

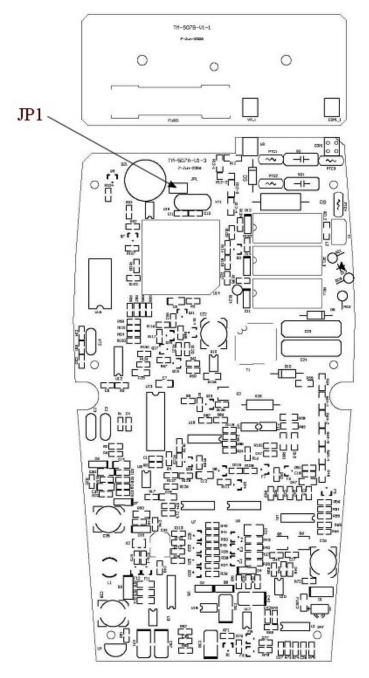


Figure 1

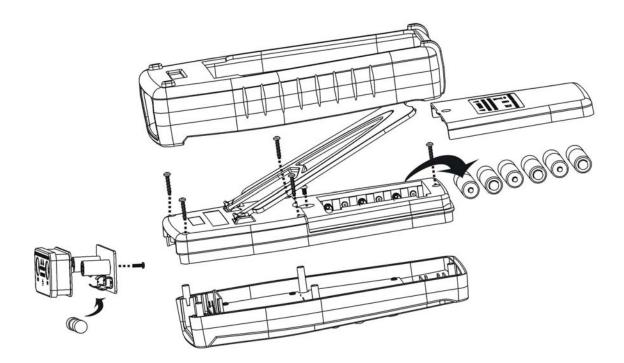


Figure 2