FCC TEST REPORT For

Foshan Classy-Cook Electrical Technology Co. Ltd.

Ceramic Hob

Test Model: LT5-06

Additional Model No.: See Page of 16

Prepared for : Foshan Classy-Cook Electrical Technology Co. Ltd.

Address : 3/F, Building One, No.28 of Huatian South 1st Road,

Hi-tech Park, Ronggui Town, Shunde District, Foshan,

China

Prepared by : Shenzhen AOCE Electronic Technology Service Co.,

Ltd.

Address : Room 202, 2nd Floor, No.12th Building of Xinhe

Tongfuyu Industrial Park, Fuhai Street, Baoan District,

Shenzhen, Guangdong, China

Tel : (+86)755-85277785 Fax : (+86)755-23705230 Web : www.aoc-cert.com

Mail : postmaster@aoc-cert.com

Date of receipt of test sample : June 01, 2022

Number of tested samples : 1

Serial number : Prototype

Date of Test : June 01, 2022 - June 06, 2022

Date of Report : June 06, 2022

FCC TEST REPORT FCC 47 CFR Part 15 Subpart B, Class B(SDoC), ANSI C63.4 -2014

Report Reference No. AOC220606101F

Date Of Issue...... June 06, 2022

Testing Laboratory Name.....: Shenzhen AOCE Electronic Technology Service Co., Ltd.

Address Room 202, 2nd Floor, No.12th Building of Xinhe Tongfuyu

Industrial Park, Fuhai Street, Baoan District, Shenzhen,

Guangdong, China

Testing Location/ Procedure......: Full application of Harmonised standards

Partial application of Harmonised standards \Box

Other standard testing method \Box

Applicant's Name.....: Foshan Classy-Cook Electrical Technology Co. Ltd.

Address : 3/F, Building One, No.28 of Huatian South 1st Road, Hi-tech

Park, Ronggui Town, Shunde District, Foshan, China

Test Specification:

Standard...... FCC 47 CFR Part 15 Subpart B, Class B(SDoC),

ANSI C63.4 -2014

Test Report Form No...... AOCEMC-1.0

TRF Originator....: Shenzhen AOCE Electronic Technology Service Co., Ltd.

Master TRF..... Dated 2011-03

Shenzhen AOCE Electronic Technology Service Co., Ltd.All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen AOCE Electronic Technology Service Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen AOCE Electronic Technology Service Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description....: Ceramic Hob

Trade Mark....: N/A

Model/ Type Reference.....: LT5-06

Ratings...... AC 208-240V, 50/60Hz, 9600W

Result: Pass

Compiled by: Supervised by: Approved by:

David Lik Kevin Huang

Jackson Fang/ Manager

David Liu/ File administrators

Kevin Huang/ Technique principal

FCC -- TEST REPORT

Test Report No.: AOC220606101F

June 06, 2022

Date of issue

Type / Model.....: LT5-06 EUT.....: Ceramic Hob **Applicant.....:** : Foshan Classy-Cook Electrical Technology Co. Ltd. Hi-tech Park, Ronggui Town, Shunde District, Foshan, China Telephone.....: : / Fax..... : / Manufacturer.....: Foshan Classy-Cook Electrical Technology Co. Ltd. Hi-tech Park, Ronggui Town, Shunde District, Foshan, Telephone.....: : / Fax....: : / Factory.....: Foshan Classy-Cook Electrical Technology Co. Ltd. Address...... : 3/F, Building One, No.28 of Huatian South 1st Road, Hi-tech Park, Ronggui Town, Shunde District, Foshan, China Telephone.....: : / Fax....: : /

Test Result according to the standards on page 5: Pass

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

TABLE OF CONTENT

Test Report Description	Page
1. SUMMARY OF STANDARDS AND RESULTS	5
1.1.Description of Standards and Results	5
2. GENERAL INFORMATION	6
2.1.Description of Device (EUT)	6
2.2.Description of Support Device	6
2.3.Description of Test Facility	6
2.4.Statement of the Measurement Uncertainty	
2.5.Measurement Uncertainty	7
3. TEST RESULTS	8
3.1.POWER LINE CONDUCTED EMISSION MEASUREMENT	8
3.2.Radiated emission Measurement	11
4. PHOTOGRAPH	14
5. EXTERNAL AND INTERNAL PHOTOS OF THE EUT	15
4 MANUEACTUDED/ADDOMALHOLDED DECLADATION	

1. SUMMARY OF STANDARDS AND RESULTS

1.1.Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below.

EMISSION							
Description of Test Item	Standard	Limits	Results				
Conducted disturbance at mains terminals	FCC 47 CFR Part 15 Subpart B, Class B(SDoC), ANSI C63.4 -2014	Class B	PASS				
Radiated disturbance	Class B	PASS					
N/A is an abbreviation for Not Applicable.							

Report No.: AOC220606101F

2. GENERAL INFORMATION

2.1.Description of Device (EUT)

EUT : Ceramic Hob

Model Number : LT5-06

Power Supply : AC 208-240V, 50/60Hz, 9600W

2.2.Description of Support Device

Name	Manufacturers	M/N	S/N

2.3.Description of Test Facility

Site Description EMC Lab. :

2.4. Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the AOC quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

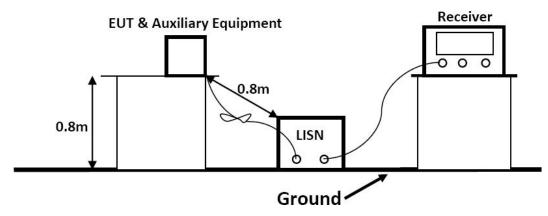
2.5. Measurement Uncertainty

Test Item		Parameters	Expanded	Expanded
			Uncertainty (Ulab)	Uncertainty
				(Ucispr)
		Level accuracy	±2.63 dB	±3.8 dB
Conducted Emission	:	(9kHz to 150kHz) (150kHz	±2.35 dB	±3.4 dB
		to 30MHz)		
Power Disturbance	:	Level accuracy	±2.90dB	±4.5 dB
		(30MHz to 300MHz)		
Radiated Emission	:	Level accuracy	$\pm 3.68~\mathrm{dB}$	N/A
		(9kHz to 200MHz)		
Radiated Emission		Level accuracy	$\pm 3.48 \text{ dB}$	$\pm 5.3 \text{ dB}$
		(200Hz to 1000MHz)		
Radiated Emission		Level accuracy	$\pm 3.90 \text{ dB}$	$\pm 5.2 \text{ dB}$
		(above 1000MHz)		

⁽¹⁾ Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus.

⁽²⁾ The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor of k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

3.TEST RESULTS


3.1. POWER LINE CONDUCTED EMISSION MEASUREMENT

3.1.1. Test Equipment

The following test equipments are used during the power line conducted measurement:

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	EMI Test Software	EZ	EZ-EMC	/	N/A	N/A
2	EMI Test Receiver	R&S	ESPI	101840	2022/04/25	2023/04/24
3	Artificial Mains	R&S	ENV216	101288	2022/04/25	2023/04/24
4	10dB Attenuator	SCHWARZBECK	MTS-IMP-136	261115-0 01-0032	2022/04/25	2023/04/24
5	Impedance Stabilization Network	TESEQ	ISN T800	45130	2022/04/25	2023/04/24

3.1.2. Block Diagram of Test Setup

3.1.3. Test Standard

Power Line Conducted Emission Limits (Class B)

	Frequency			Limit (dBμV)
(MHz)		Quasi-peak Level Average Level		
0.15	~	0.50	66.0 ~ 56.0 *	56.0 ~ 46.0 *
0.50	~	5.00	56.0	46.0
5.00	~	30.00	60.0	50.0

NOTE1-The lower limit shall apply at the transition frequencies. NOTE2-The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

3.1.4. EUT Configuration on Test

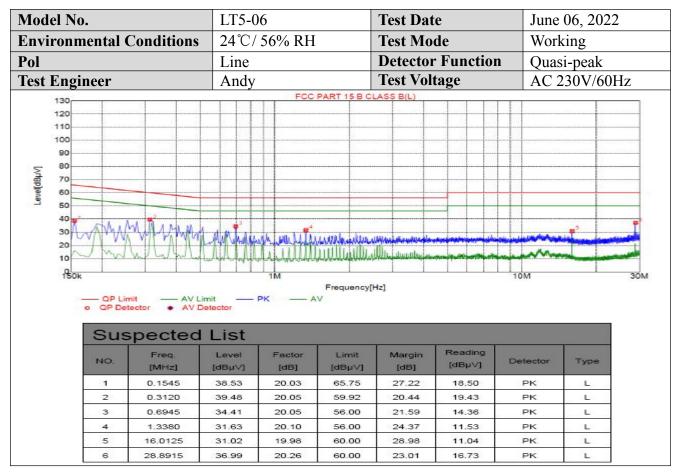
The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

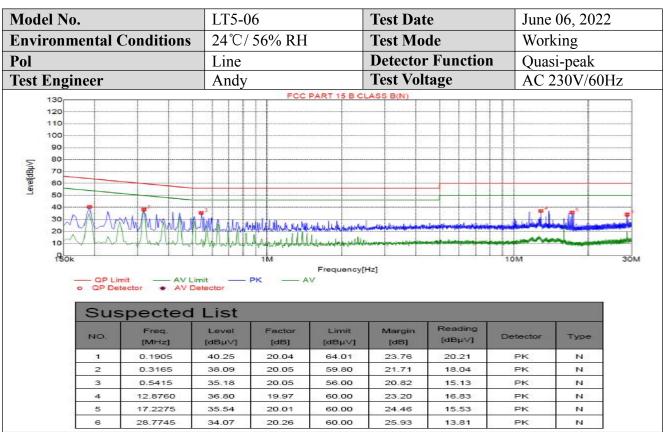
3.1.5. Operating Condition of EUT

- 3.1.5.1. Setup the EUT as shown on Section
- 3.1.5.2. Turn on the power of all equipments.
- 3.1.5.3.Let the EUT work in measuring Working and measure it.

3.1.6. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC/ANSI C63.4-2014 on Conducted Emission Measurement.

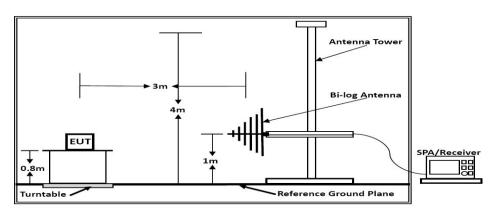

The bandwidth of the test receiver is set at 9kHz.


The frequency range from 150kHz to 30MHz is investigated

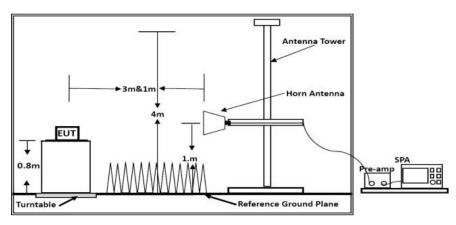
3.1.7.Test Results

PASS.

The test result please refer to the next page.


3.2. Radiated emission Measurement

3.2.1Test Equipment


The following test equipments are used during the radiated emission measurement:

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	EMI Test Software	EZ	EZ-EMC	/	N/A	N/A
2	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2022/04/25	2023/04/24
3	Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-192 5	2022/04/25	2023/04/24
4	EMI Test Receiver	R&S	ESR 7	101181	2022/04/25	2023/04/24
5	Broadband Preamplifier	1	BP-01M18G	P190501	2022/04/25	2023/04/24

3.2.2.Block Diagram of Test Setup

Below 1GHz

Above 1GHz

3.2.3. Radiated Emission Limit (Class B)

Limi	its for	Radiated	Disturbance	e Below	1GHz
		Tadiated	Distuibance		TOLIZ

FREQUENCY	DISTANCE	FIELD STRENGTHS LIMIT		
MHz	Meters	μV/m	dB(μV)/m	
30 ~ 88	3	100	40	
88 ~ 216	3	150	43.5	
216 ~ 960	3	200	46	
960 ~ 1000	3	500	54	

Remark: (1) Emission level (dB) μ V = 20 log Emission level μ V/m

- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

Limits for Radiated Emission Above 1GHz							
Frequency Distance Peak Limit Average Limit							
(MHz)	(Meters)	(dBµV/m)	(dBµV/m)				
Above 1000 3 74 54							
***Note: The lower limit applies at the transition frequency.							

3.2.4. EUT Configuration on Measurement

The following equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

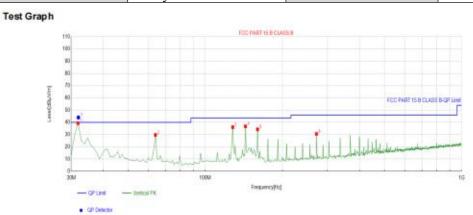
3.2.5. Operating Condition of EUT

1.1.1.1. Setup the EUT as shown in Section 3.2.2.

3.2.5.2.Let the EUT work in test Mode 1 and measure it.

3.2.6. Test Procedure

EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on a antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated by-log antenna) is used as receiving antenna. Both horizontal and vertical polarization of the antenna is set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4-2014 on radiated emission measurement.


The bandwidth of the EMI test receiver is set at 120kHz, 300kHz.

The frequency range from 30MHz to 1000MHz is checked.

3.2.7. Radiated Emission Noise Measurement Result PASS.

The scanning waveforms please refer to the next page.

Model No.	LT5-06	Test Date	June 06, 2022
Environmental Conditions	24℃/ 56% RH	Test Mode	ON
Pol	Vertical	Detector Function	Quasi-peak
Test Engineer	Andy	Distance	3m

Suspected List

Suspe	Suspected List								
NO.	Freq. [MHz]	Factor [dB]	Reading [dBµV/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [*]	Polarity
1	31.9419	-16.26	55.55	39.29	40.00	0.71	100	25	Vertical
2	63.9840	-16.16	45.92	29.76	40.00	10.24	100	132	Vertical
3	128.0681	-18.29	54.39	36.10	43.50	7.40	100	80	Vertical
4	143.6036	-19.09	55.85	36.76	43.50	6.74	100	112	Vertical
5	160.1101	-18.21	52.50	34.29	43.50	9.21	100	283	Vertical
6	271.7718	-13.59	44.16	30.57	46.00	15.43	100	283	Vertical

Model No.	LT5-06	Test Date	June 06, 2022
Environmental Conditions	24℃/56% RH	Test Mode	ON
Pol	Horizontal	Detector Function	Quasi-peak
Test Engineer	Andy	Distance	3m

Test Graph

Suspected List

Suspected List									
NO.	Freq. [MHz]	Factor [dB]	Reading [dBµV/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [*]	Polarity
1	31.9419	-16.26	40.38	24.12	40.00	15.88	100	91	Horizontal
2	63.9840	-16.16	30.88	14.72	40.00	25.28	100	316	Horizontal
3	128.0681	-18.29	52.06	33.77	43.50	9.73	100	266	Horizontal
4	143.6036	-19.09	54.90	35.81	43.50	7.69	100	119	Horizontal
5	160.1101	-18.21	54.07	35.86	43.50	7.64	100	28	Horizontal
6	303.8138	-12.69	45.34	32.65	46.00	13.35	100	83	Horizontal

4. PHOTOGRAPH

Fig.1

Fig.2

5. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

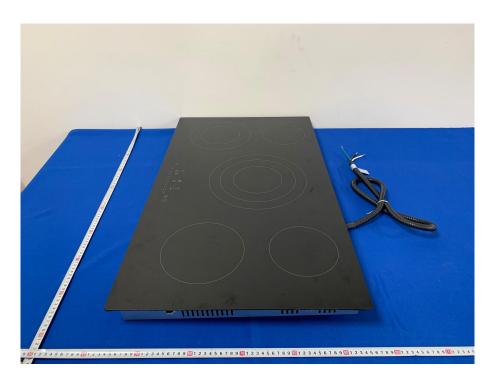


Fig.1

Fig.2

6. MANUFACTURER/ APPROVAL HOLDER DECLARATION

Report No.: AOC220606101F

LT2V-31	LT2H-03	LT4-49	LT4-53	LT5-04
KCN-3002K	HCC-3402K	CE30-7206K	CE304-8007	CE30-8608
CE36-10208	LT2V-34	LT2V-35	LT2V-36	LT2V-37
LT2V-38	LT2H-05	LT2H-06	LT2H-07	LT2H-08
LT2H-09	LT3-39	LT3-40	LT3-41	LT3-42
LT3-43	LT4-58	LT4-59	LT4-60	LT4-61
LT4-62	LT5-23	LT5-24	LT5-25	LT5-26
LT5-27	LT1-11	LT1-12	LT2V-39	LT2V-40
LT2V-41	LT2V-42	LT3-44	LT4-72	LT4-73
LT4-74	LT4-75	LT4-76	LT4-77	LT4-78
LT4-79	LT4-80	LT4-81	LT4-82	LT5-28
LT5-29	LT5-30	LT5-31	LT5-32	LT5-33
LT5-34	LT5-06	LT4-56	LT5-20	LT2V-07
CERV-3002SL	CE24-6605SL	CE24-7206SL		

Belong to the tested device:

Product description : Ceramic Hob

Model name : LT5-06

Remark: PCB board, structure and internal of these model(s) are the same, So no additional models were tested.

-----THE END OF REPORT-----