

SHEET METAL/ HVAC PRO CALC

**ADVANCED CONSTRUCTION-MATH CALCULATOR
FOR SHEET METAL & HVAC PROFESSIONALS**

MODEL 4090

Pocket Reference Guide

**CALCULATED
INDUSTRIES®**

FAST. ACCURATE. RELIABLE.

SHEET METAL/HVAC PRO CALC

The *Sheet Metal/HVAC Pro Calc* calculator helps you save time and prevent costly errors!

Quickly Solve:

- *Feet-Inches-Fractions, Metric Dimensional Problems and Conversions*
- *Problems Involving All Fractions — 1/2-1/64ths!*
- *Trigonometry Keys*
- *Law of Cosines*
- *Offsets*
- *Fan Laws 1, 2 and 3*
- *Velocity/Velocity Pressure*
- *Right Angle/Rafters*
- *Stair Layout*
- *Areas and Volumes*
- *Circle/Arc, Columns/Cone Area and Volume*
- *And more!*

TABLE OF CONTENTS

KEY DEFINITIONS.....	4
Dimension Keys.....	4
Miscellaneous Functions	4
Trig. Keys.....	5
Pythagorean Theorem Keys.....	6
Law of Cosines Keys	6
Offset Keys	7
Fan Law Keys.....	7
Velocity Pressure/FPM Keys	8
Circle/Arc Keys	9
Column/Cone Key.....	10
Right Triangle/Roof Framing Keys.....	10
Stair Layout Key	11
EXAMPLES.....	13
Adding and Subtracting Strings of Dimensions	13
Dividing Dimensions	13
Converting Feet-Inches to Decimal Feet.....	14
Converting Feet-Inches to Meters and Millimeters	14
Converting Fractions to Decimals (and Vice Versa)	14
Circle Circumference and Area.....	15
Rectangular Area and Volume.....	15
Area of a Triangle	16

Volume of a Cylinder	16
Cubed Function	17
Cubed Root.....	17
Scientific Notation	17
Converting D:M:S	18
Finding Sine, Cosine, Tangent.....	18
Finding ArcSin, ArcCos, ArcTan.....	19
Using Trigonometry to Find	
Unknown Side	19
Offset Basic Example	20
Law of Cosines/Triangle Area.....	21
Fan Law 1	22
Fan Law 2.....	23
Fan Law 3.....	24
Converting Velocity Pressure	25
Converting FPM.....	26
RIGHT ANGLE/FRAMING	27
Degree of Pitch.....	27
Angle and Hypotenuse	28
Common Rafter Length	29
Regular Hip/Valley and Jacks.....	30
Irregular Hip/Valley	31
STAIRS	32
Stairs — <i>Given Rise and Run</i>	32
APPENDIX	33
Preference Settings	33
Battery and Warranty Information.....	33

KEY DEFINITIONS

Dimension Keys

m	Meters
Conv m	Millimeters
Feet	Feet
Inch	Inch
/	Fraction Bar

Miscellaneous Functions

←	Backspace Key
Conv X	Clear All
Conv ÷	(1/x) Reciprocal
Conv —	(+/-) Toggle
Conv +	(%) Percent
Conv =	Pref. Settings (see large User's Guide for details)
Conv ○	Converts between d:m:s and decimal degrees
x²	Squares the value in the display
Conv x³	x³ — Cubes the value in the display

✓x	Square root
Conv ✓x	Cube root
Conv /	Exponent ($x10^y$)
M+	(M+) Memory +
Conv M+	(M-) Memory -
Rcl Rcl	Recall and Clear M+
Conv 1	(M1) Storage Register M1
Conv 2	(M2) Storage Register M2
Conv 3	(M3) Storage Register M3
Rcl M+ , 1 , 2 , or 3	Recall M+, M1, M2 or M3

Trig. Keys

Sine	Finds the sine of a degree or undimensioned value
Conv Sine	Arcsine (sin⁻¹) — Gives the angle for the sine value
Cos	Finds the cosine
Conv Cos	Arccosine (cos⁻¹) — Gives the angle for the cosine value
Tan	Finds the tangent

Conv **Tan**

Arctangent (tan⁻¹) —
Gives the angle for the
tangent value

Pythagorean Theorem Keys

- x** Enters or calculates “x” or the horizontal leg of a right triangle
- y** Enters or calculates “y” or the vertical leg of a right triangle
- r** Enters or calculates “r” or the hypotenuse (diagonal) leg of a right triangle
- θ** Enters or calculates the “theta” or the pitch/slope of a right triangle

Law of Cosines Keys

- Conv** **9** Calculates angles A, B and C, as well as triangle area, given below entries
- Conv** **4** Enters Side “a” of a triangle
- Conv** **5** Enters Side “b” of a triangle
- Conv** **6** Enters Side “c” of a triangle

Offset Keys

Conv (Calculates offset measurements including: center-line radius, wrapper length/stretch-out, heel radius, throat radius and theta, given below entries
x	Enters the actual length "x"
y	Enters the offset "y"
Conv 4	Enters length of "end a"

Fan Law Keys

Conv x	Fan Law 1 — Calculates the missing variable (e.g., "a-new" or "b-new", for CFM new or RPM new) for Fan Law 1, given the three known variables into the applicable Storage Registers below
Conv y	Fan Law 2 — Calculates the missing variable (e.g., "a-new" or "b-new", for CFM new or SP new) for Fan Law 2

Conv **r**

Fan Law 3 — Calculates the missing variable (e.g., “a-new” or “b-new”, for CFM new or BHP new) for Fan Law 3

STORAGE REGISTERS USED FOR FAN LAWS:

Conv **4** Enters “a-old” or current “a” value

Conv **7** Enters “a-new”

Conv **5** Enters “b-old” or current “b” value

Conv **8** Enters “b-new”

Velocity Pressure/FPM Keys

Conv **0** VP \blacktriangleleft \triangleright FPM

<u>Press</u>	<u>Result</u>
1	<i>Calculates velocity (FPM) – assumes entry is velocity pressure</i>
2	<i>Calculates velocity pressure – assumes entry is velocity (FPM)</i>

(Cont'd)

<u>Press</u>	<u>Result</u>
3	<i>Calculates Metric velocity (MPS) – assumes entry is kPA</i>
4	<i>Calculates Metric velocity pressure (kPA) – assumes entry is MPS</i>

Circle/Arc Keys

Circ

Circle — Calculates circumference and circle area

Conv **θ**

Radius — Enters or calculates circle radius

Conv **Circ**

Arc — Calculates: arc length or degree, chord length, segment area, pie slice area, segment rise, and length of arched wall studs

π

Pi (π) — 3.141593

Conv **π**

ArcK — constant = 0.017453

Column/Cone Key

Conv

Column/Cone —

Calculates volume and surface area of column or cone upon consecutive presses of following **Conv**

Right Triangle/Roof Framing Keys

θ (*Theta*)

Enters/calculates the pitch/slope (amount of "Rise" over 12" of "Run")

x (*Run*)

Enters or calculates the horizontal leg of a right triangle

y (*Rise*)

Enters or calculates the vertical leg of a right triangle

r (*Diag*)

Enters or calculates the diagonal leg/hypotenuse, or Common rafter length

Hip/V

Calculates length of the regular or irregular Hip/Valley rafter

Conv **Hip/V**

Enters irregular pitch used to calculate lengths of the irregular Hip/Valley and Jack rafters

Jack

Calculates Jack rafter lengths on the regular-pitched roof side

Conv**Jack**

Calculates Jack rafter lengths on the irregular-pitched roof side

Stair Layout Key

Stair

Given rise and/or run and stored* variables, calculates or displays:

Press	Result
1	Riser Height
2	Number of Risers
3	Riser Overage/ Underage
4	Tread Width
5	Number of Treads
6	Tread Overage/ Underage
7	Stairwell Opening
8	Stringer Length
9	Angle of Incline
10	Run (entered or calculated)
11	Rise (entered or calculated)

(Cont'd)

(Cont'd)

<u>Press</u>	<u>Result</u>
12	Stored Riser Height*
13	Stored Tread Width*
14	Stored Headroom Height*
15	Stored Floor Thickness*

STAIR DEFAULT (STORED) VALUES

- 7-1/2" Desired Riser Height
- 10" Desired Tread Width
- 10" Floor Thickness (used in calculation of Stairwell Opening)
- 6'8" Headroom Height

**Note: See large User's Guide for details on Customizable Stair Settings.*

EXAMPLES

Note: This pocket guide is limited due to space; see large User's Guide for more examples and details on calculator features.

Adding and Subtracting Strings of Dimensions

Add the following measurements:

- 6 feet 2-1/2 inches
- 18.25 inches
- 2.5 meters

Then subtract 5.5 feet:

KEYSTROKE	DISPLAY
6 Feet 2 Inch 1 / 2 +	
1 8 • 2 5 Inch +	
2 • 5 m =	15 FEET 11-3/16 INCH
- 5 • 5 Feet =	10 FEET 5-3/16 INCH

Dividing Dimensions

Divide 15 feet 3-3/4 inches into thirds (divide by 3):

KEYSTROKE	DISPLAY
1 5 Feet 3 Inch 3 / 4 ÷ 3 =	5 FEET 1-1/4 INCH

Converting Feet-Inches to Decimal Feet

Convert 5' 7-1/2" to decimal feet, then decimal inches (also, convert to fractional inches):

KEYSTROKE	DISPLAY
5 Feet 7 Inch 1 / 2	5 FEET 7-1/2 INCH
Conv Feet	5.625 FEET
Inch	67.5 INCH
Inch	67-1/2 INCH

Converting Feet-Inches to Meters and Millimeters

Convert 8' 6" to meters and millimeters:

KEYSTROKE	DISPLAY
8 Feet 6 Inch Conv m	2.591 M
m (mm)	2590.8 MM

Converting Fractions to Decimals (and Vice Versa)

Convert 7/32" to decimal inch (and round answer). Then convert 5.875" to the nearest 16ths of an inch:

KEYSTROKE	DISPLAY
7 / 3 2 Conv Inch	0.21875 INCH (Answer = 0.219")
5 • 8 7 5 Inch Conv Inch	5-7/8 INCH

Circle Circumference and Area

Find the circumference and area of a circle with a diameter of 25 inches:

KEYSTROKE	DISPLAY
On/C	0.
On/C	
2 5 Inch Circ	DIA 25 INCH
Circ	CIRC 78-9/16 INCH
Circ	AREA 490.8739 SQ INCH

Rectangular Area and Volume

Find the area and volume:

- Length: 20 feet 6-1/2 inches
- Width: 12 feet 8-1/2 inches
- Height: 18 inches

KEYSTROKE	DISPLAY
2 0 Feet 6 Inch 1 / 2 ×	20 FEET 6-1/2 INCH
1 2 Feet 8 Inch 1 / 2 =	261.0503 SQ FEET
× 1 8 Inch =	391.5755 CU FEET

Area of a Triangle

Find the area of a triangle if its base is 45" and altitude/height is 30":

KEYSTROKE	DISPLAY
4 5 Inch ÷ 2 =	22-1/2 INCH
× 3 0 Inch =	675. SQ INCH

Volume of a Cylinder

Find the volume of a cylinder with a diameter of 2 feet 4 inches and a height of 4 feet 6 inches:

Note: Use Column/Cone function.

KEYSTROKE	DISPLAY
1. Enter diameter to find circle area:	
On/C On/C	0.
2 Feet 4 Inch Circ Circ Circ	
	AREA 4.276057 SQ FEET
2. Enter height and find volume:	
4 Feet 6 Inch y Conv)	
	COL 19.24226 CU FEET

Cubed Function

What is 50^3 ?

KEYSTROKE	DISPLAY
On/C On/C 5 0 Conv x^3	0. 125000.

Cubed Root

What are the three dimensions of a cube with a volume of 2028 in^3 ?

KEYSTROKE	DISPLAY
On/C On/C 2 0 2 8 Conv \sqrt{x}	0. 12.65773 (INCH)

Scientific Notation

Add 1.78×10^{10} and 3.90×10^9 :

KEYSTROKE	DISPLAY
On/C On/C 1 • 7 8 Conv / 1 0 + 3 • 9 Conv / 9 =	0. 2.17000 ¹⁰

Converting D:M:S

Convert $23^{\circ}42'39''$ to decimal degrees:

KEYSTROKE	DISPLAY
On/C On/C 2 3 • 4 2 • 3 9 Conv •	0. DMS 23.42.39 23.71083°

Finding Sine, Cosine, Tangent

Find $\sin 12^{\circ}$, $\cos 33^{\circ}$ and $\tan 75^{\circ}$:

KEYSTROKE	DISPLAY
On/C On/C 1 2 Sine	0. 0.207912
3 3 Cos	0.838671
7 5 Tan	3.732051

Finding ArcSin, ArcCos, ArcTan

Find angle A if $\sin A = 0.57544$, $\cos A = 0.06753$ and $\tan A = 0.87421$; round to the nearest whole angle:

KEYSTROKE	DISPLAY
On/C On/C	0.
• 5 7 5 4 4 Conv Sine	35.13045° (35°)
• 0 6 7 5 3 Conv Cos	86.12787° (86°)
• 8 7 4 2 1 Conv Tan	41.16028° (41°)

Using Trigonometry to Find Unknown Side

Using the Pythagorean Theorem ($a^2 + b^2 = c^2$) keys, find Side a ("x") of a right triangle, if Side b ("y") is 6-1/2" and Side c ("r"), the hypotenuse, is 12-1/16":

Note: Use the calculator's x, y and r keys; substitute triangle legs a, b and c for **x**, **y** and **r**.

KEYSTROKE	DISPLAY
On/C On/C	0.
6 Inch 1 / 2 y	Y 6-1/2 INCH
1 2 Inch 1 / 1 6 r	R 12-1/16 INCH
x	X 10-3/16 INCH

Offset Basic Example

If an offset is 5 feet, the actual length 10 feet, and the height of the “end A” equal to 7 feet, calculate all offset values:

KEYSTROKE	DISPLAY
On/C On/C	0.
1. <i>Enter actual length as “x”:</i>	
1 0 Feet x	X 10 FEET 0 INCH
2. <i>Enter offset length as “y”:</i>	
5 Feet y	Y 5 FEET 0 INCH
3. <i>Enter “end A” as “a”:</i>	
7 Feet Conv 4	A STORED 7 FEET 0 INCH
4. <i>Find Centerline Radius, Wrapper Length, Heel Radius, Throat Radius and Theta:</i>	
Conv (RAD 6 FEET 3 INCH
(WL 11 FEET 7-1/8 INCH
(HEEL 9 FEET 9 INCH
(THRT 2 FEET 9 INCH
(THET 26.56505°

Law of Cosines/Triangle Area

Using Sides a , b and c , find the corresponding angles A , B and C :

- Side a : 38 feet 5 inches
- Side b : 23 feet 4-9/16 inches
- Side c : 26 feet 1-13/16 inches

KEYSTROKE	DISPLAY
-----------	---------

On/C On/C	0.
-------------------------	----

1. Enter side a , b and c :

3 **8** **Feet** **5** **Inch** **Conv** **4**

A STORED 38 FEET 5 INCH

2 **3** **Feet** **4** **Inch** **9** **/** **1** **6** **Conv** **5**

B STORED 23 FEET 4-9/16 INCH

2 **6** **Feet** **1** **Inch** **1** **3** **/** **1** **6** **Conv** **6**

C STORED 26 FEET 1-13/16 INCH

2. Calculate angles A , B and C :

Conv **9**

$\angle A$ 101.5734°

9

$\angle B$ 36.59978°

9

$\angle C$ 41.8268°

3. Calculate triangle area:

9

AREA 299.4929 SQ FEET

Fan Law 1

A 1,250 CFM fan is running at 750 RPM, but it needs to supply 1,400 CFM. What is the RPM required?

KEYSTROKE	DISPLAY
------------------	----------------

On/C On/C	0.
-------------------------	-----------

1. *Enter current CFM into “a” old:*

1 2 5 0 Conv 4 A STORED 1250.

2. *Enter new CFM into “a-new”:*

1 4 0 0 Conv 7 An STORED 1400.

3. *Enter current RPM into “b” old:*

7 5 0 Conv 5 B STORED 750.

4. *Calculate new RPM or “b-new”:*

Conv x RPM_n FAN LAW1 840.

Fan Law 2

A fan is producing 15,300 CFM at 3.2" SP.
If the fan is adjusted to 14,000 CFM, what
will the new SP be?

KEYSTROKE	DISPLAY
-----------	---------

On/C On/C	0.
-------------------------	----

1. Enter current CFM into "a" old:

1 **5** **3** **0** **0** **Conv** **4**

A STORED 15300.

2. Enter new CFM into "a-new":

1 **4** **0** **0** **0** **Conv** **7**

An STORED 14000.

3. Enter current SP into "b" old:

3 **•** **2** **Conv** **5**

B STORED 3.2

4. Calculate new SP or "b-new":

Conv **y**

SP_n FAN LAW2 2.679311

Fan Law 3

A fan is running at 15,800 CFM using 6.3 BHP. If the CFM is increased to 20,000 CFM, what is the new BHP?

KEYSTROKE	DISPLAY
------------------	----------------

On/C On/C	0.
-------------------------	-----------

1. *Enter current CFM into “a” old:*

1 **5** **8** **0** **0** **Conv** **4**

A STORED 15800.

2. *Enter new CFM into “a-new”:*

2 **0** **0** **0** **0** **Conv** **7**

An STORED 20000.

3. *Enter current BHP into “b” old:*

6 **•** **3** **Conv** **5**

B STORED 6.3

4. *Calculate new BHP or “b-new”:*

Conv **r**

BHP_n FAN LAW 3 12.77789

Converting Velocity Pressure

After obtaining velocity pressures (VPs) from taking a traverse, convert the following to feet per minute (FPM):

0.049"

0.123"

0.027"

KEYSTROKE	DISPLAY
On/C On/C • 0 4 9 Conv 0*	0. FPM 886.5445
On/C On/C • 1 2 3 Conv 0	0. FPM 1404.608
On/C On/C • 0 2 7 Conv 0	0. FPM 658.0887

*The VP \blacktriangleleft FPM function begins with the last displayed value. If FPM is not displayed with the first press of **Conv 0**, continue pressing **0** until FPM is displayed.

Converting FPM

Calculate the velocity pressure if the feet per minute (FPM) is 500:

KEYSTROKE	DISPLAY
On/C On/C	0.

Enter 500 FPM to calculate velocity pressure (VP):

5 **0** **0** **Conv** **0** **0*** **VP** **0.015586**

*The VP \blacktriangleleft FPM function begins with the last displayed value. If VP is not displayed with the first press of **Conv** **0**, continue pressing **0** until VP is displayed.

RIGHT ANGLE/FRAMING

Degree of Pitch

If the degree of pitch is 30.45° , what is the percent grade, slope and pitch in inches?

KEYSTROKE	DISPLAY
On/C	0.
On/C	
3	<Ø 30.45°
0	%GRD 58.78702
•	SLP 0.58787
4	
5	
θ	
θ	
θ	
θ	PTCH 7-1/16 INCH

Note: To convert Pitch in Inches: Simply enter the pitch in inches first (e.g., 7 Inch θ), then continuously press the θ key to calculate the pitch conversions, as above.

Angle and Hypotenuse

Find the diagonal (hypotenuse) and degree of angle of a right triangle that is 9 feet high and 12 feet long:

KEYSTROKE

On/C **On/C**

DISPLAY

0.

1. Enter rise and run:

9 **Feet** **y**

1 **2** **Feet** **x**

Y 9 FEET 0 INCH

X 12 FEET 0 INCH

2. Solve for diagonal/hypotenuse and pitch in inches and degree of angle:

r

θ

θ **θ** **θ**

R 15 FEET 0 INCH

<Ø 36.8699°

PTCH 9 INCH

Common Rafter Length

Find the point-to-point length of the common rafter on a 7/12-pitched roof with a span of 28 feet. What are the angle cuts?

KEYSTROKE

On/C **On/C**

DISPLAY

0.

1. Enter pitch:

7 **Inch** **θ**

PTCH 7 INCH

2. Enter half the span as the run:

2 **8** **Feet** **÷** **2** **=**

14 FEET 0 INCH

x

X 14 FEET 0 INCH

3. Find the Common and cuts:

r

R 16 FEET 2-1/2 INCH

r

PLMB 30.25644°

r

LEVL 59.74356°

Regular Hip/Valley and Jacks

A roof's pitch is 9/12 and half the total span is 6 feet. Find the lengths of the Common, Hip/Valley and Jack rafters. Also find the cut angles:

Note: Jack rafters are set at 16" on-center spacing; to change on-center, use **Jack** — e.g., for a 17" o.c., enter **1 7 Jack**.

KEYSTROKE	DISPLAY
-----------	---------

On/C On/C	0.
-------------------------	----

1. Find the Common rafter length:

6 Feet x	X 6 FEET 0 INCH
9 Inch θ	PTCH 9 INCH
r (Common)	R 7 FEET 6 INCH

2. Find the Hip/Valley rafter length and cut angles; then Jack rafter lengths and cut angles:

Hip/V	H/V 9 FEET 7-1/4 INCH
Hip/V	PLMB 27.94°*
Hip/V	LEVL 62.06°*
Hip/V	CHK1 45.°
Jack	JKOC 16 INCH
Jack	JK 1 5 FEET 10 INCH
Jack	JK 2 4 FEET 2 INCH
Jack	JK 3 2 FEET 6 INCH
Jack	JK 4 0 FEET 10 INCH

(Cont'd)

(Cont'd)

KEYSTROKE	DISPLAY
Jack	JK 5 0 FEET 0 INCH
Jack	PLMB 36.87°*
Jack	LEVL 53.13°*
Jack	CHK1 45.°

*Angle answers are rounded.

Irregular Hip/Valley

A roof has a 9/12 pitch, an irregular pitch of 8/12, and half the span is 6 feet 7 inches. Solve the hip/valley length. On-center spacing is 16" (default):

KEYSTROKE	DISPLAY
-----------	---------

On/C	On/C	0.
------	------	----

1. Find Common rafter length:

9	Inch	θ	PTCH	9 INCH
6	Feet	7	Inch	x
r				X 6 FEET 7 INCH
				R 8 FEET 2-3/4 INCH

2. Enter irregular pitch and find irregular Hip rafter:

8	Inch	Conv	Hip/V	IPCH	8 INCH
Hip/V					IH/V 11 FEET 0-7/8 INCH

STAIRS

Stairs — *Given Rise and Run*

You're going to build a stairway that has a floor-to-floor height of 10 feet 1 inch, a run of 12 feet 5 inches, and a desired riser height of 7-1/2 inches (default). Find the following: riser height, number of risers, riser overage/underage (if any), tread width, number of treads, tread overage/underage (if any), stairwell opening, stringer length, and angle of incline:

<u>KEYSTROKE</u>	<u>DISPLAY</u>
------------------	----------------

On/C On/C	0.
-------------------------	----

1. Enter rise and run:

1 0 Feet 1 Inch y	Y 10 FEET 1 INCH
---	------------------

1 2 Feet 5 Inch x	X 12 FEET 5 INCH
---	------------------

2. Recall stored 7-1/2" desired riser height and find stair values:

Rcl Stair	STORED R-HT 7-1/2 INCH
-------------------------	-------------------------------

Stair	R-HT ↑ 7-9/16 INCH
--------------	---------------------------

Stair	RSRS 16.
--------------	-----------------

Stair	R+/- 0 INCH
--------------	--------------------

Stair	T-WD ↑ 9-15/16 INCH
--------------	----------------------------

Stair	TRDS 15.
--------------	-----------------

(Cont'd)

(Cont'd)

KEYSTROKE	DISPLAY
Stair	T+/- 0-1/16 INCH
Stair	OPEN 9 FEET 10-1/4 INCH
Stair	STRG 15 FEET 7-5/16 INCH
Stair	INCL 37.27136°

APPENDIX

Preference Settings

See large User's Guide for details.

Battery and Warranty Information

See large User's Guide for details.

- Your calculator uses Two (2) LR44 batteries.

**CALCULATED
INDUSTRIES®**

Putting answers at your fingertips since 1976

This equipment has been certified to comply with the limits for a Class B computing device, pursuant to Subpart J of Part 15 of FCC rules.

Pocket Reference Guide copyrighted by
Calculated Industries, Inc. © 2021.

Calculated Industries® is a registered trademark of Calculated Industries, Inc.

ALL RIGHTS RESERVED
CALCULATED INDUSTRIES®

4840 Hytech Drive
Carson City, NV 89706 USA

1-800-854-8075
E-mail: info@calculated.com
calculated.com
Designed in the USA

01/21

PRG4090E-C